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Abstract Heat shock proteins (HSPs) are synthesised
under stressful conditions such as exposure to elevated tem-
peratures, contamination, free radicals, UV light or patho-
physiological states resulting from parasites and/or
pathogens. HSPs function to protect cells by means of mod-
ulation of protein folding. In Antarctica, these proteins have
been studied in such organisms as protozoa and fishes,
without attention to geographical variation. We studied the
variation of HSP70 and HSP60 levels in Gentoo, Adelie
and Chinstrap penguins among different populations along
the Antarctic Peninsula from King George Island (62°15'S)
to Avian Island (67°46’S). Our results show that the north-
ern population of Gentoo penguin showed higher levels of
HSP70 and HSP60 than the southern population. High tem-
perature, human impact and immunity as a proxy for para-
sites and diseases in northern locations could explain such
variation. Adelie penguin only showed significant geo-
graphical variation in HSP70, increasing north to south, a
pattern perhaps related to increased UV radiation and
decreased temperatures from north to south. Chinstrap
penguin shows no population differences in the variation in
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neither HSP70 nor HSP60, although HSP70 showed
marginally significant differences. Sexual differences in the
level of these proteins are also discussed.
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Introduction

Heat shock proteins (HSPs) are synthesised by cells under a
variety of stressful conditions. These proteins were discov-
ered by Ritossa (1962) as a response to severe heat shock in
Drosophila, giving this compound its name. HSPs have
now been found in many organisms from bacteria to plants
and animals (Morimoto 1991) and are highly conserved
from an evolutionary standpoint (Schlesinger 1990). This
suggests their importance to cells as a protection against
stress (Linquist 1986). These proteins are part of the Pro-
tein Quality System (PQS), which is involved in protein
quality control operating to maintain the homeostasis under
normal cellular conditions. The function of this system is
both to secure correct folding of proteins and to assist in
degradation of denatured or aggregated proteins. HSPs
function as molecular chaperones that provide an environ-
ment in which protein that have folded incorrectly due to
stress can be properly folded (Parsell and Lindquist 1993;
Gregersen et al. 2001). There are several kinds of HSPs that
can be classified by molecular weight into five major
groups, HSP100 (100-105 kDa), HSP90 (82-90 kDa),
HSP70 (68-75 kDa), HSP60 (58-65 kDa) and the small
HSP group (15-30 kDa). Among them, the more com-
monly studied are HSP70 and HSP60 (e.g. Fader et al.
1994; Merino et al. 1998; Carey et al. 1999; Morales et al.
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2004). A high number of stressors promoting the expres-
sion of HSPs have been described as, for example, high
temperature, UV radiation, heavy metals, parasitism or bac-
terial and viral infection (Collins and Hightower 1982;
Trautinger et al. 1996; Werner and Nagel 1997; Merino
et al. 1998; see review in Sorensen et al. 2003).

Studies on HSPs, mainly HSP70, in Antarctic organisms
include algae (Vayda and Yuan 1994), protozoa (La Terza
et al. 2001) and fish (Hofmann et al. 2000; Place and Hof-
mann 2005). For example, Antarctic algae expressed HSPs
in response to temperature variation (Vayda and Yuan
1994), while some fishes like Trematomus bernacchii lack
the ability to up-regulate HSP70 due to a mutation in the
HSFlpromotor (Buckley et al. 2004). This is likely due to
the absence of positive selection during evolution at stable
subzero temperatures.

Variation in the levels of HSPs among different popula-
tions of the same organism has not been addressed in Ant-
arctica. Here, we report results of a study of such variation
in different populations of three species of penguins along
the Antarctic Peninsula. The latter region has been showing
strong latitudinal changes in several factors, which could
influence HSP levels (see Sorensen et al. 2003), such as
variation in temperature (Turner et al. 2004), UV radiation
(Madronich et al. 1994), contamination and human pressure
(Hofman and Jatko 2001; Bargagli 2005). Moreover, a lati-
tudinal variation in immunological parameters has been
reported in this area, a pattern perhaps indicating latitudinal
variation in infection by parasites, pathogens or diseases
(Barbosa et al. 2007). The Antarctic Peninsula has also
experienced faster and higher temperature change than
elsewhere in the world (King et al. 2003). Moreover, a
delay in ozone hole recovery is predicted (Shindell and
Grewe 2002); contamination levels (Bargagli 2005) and a
change in the range, abundance and virulence of parasites is
predicted under a scenario of temperature increase (Sut-
herst 2001).

Our aim was to study variation on HSP levels in sev-
eral populations of three penguin species along the Ant-
arctic Peninsula to establish a baseline for future
comparisons.

Table 1 Localities, species studied and sample sizes

Materials and methods

The study was carried out in several locations on islands
along the west coast of the Antarctic Peninsula (see
Table 1).

Three species of pygoscelid penguins were studied:
chinstrap penguin (Pygoscelis antarctica), gentoo penguin
(Pygoscelis papua) and adélie penguin (Pygoscelis
adeliae). Chinstrap penguins range from 56° to 65°S, gen-
too penguin from 46° to 65°S and adélie penguins from 54°
to 77°S (Williams 1995). Therefore, our study covers the
intermediate part of the adélie penguin range, and the
southern part of the ranges of chinstrap and gentoo pen-
guins.

During January and February 2003, we visited several
penguin breeding localities along the Antarctic Peninsula
region (Table 1). Adult penguins were captured on shore in
order to minimise disturbance in the breeding colonies. To
make comparisons among different localities, adults were
chosen instead of chicks due to likely differences in chick
development when sampling was done. Anyway, we sam-
pled the penguin populations when chicks were in guard
phase, thus precluding the likely effect on variation by the
breeding period.

From each individual, we measured body mass and took
a blood sample from the foot vein using a needle and a hep-
arinised capillary tube. Blood was later centrifuged at
12,000 rpm for 10 min to separate plasma from red blood
cells. Hematocrit or packed cell volume was measured
before separation of plasma and cell fractions. After centri-
fugation, cell fraction was frozen for subsequent analyses.

Heat shock protein determination was carried out from
the blood cellular fraction by means of the Western blot
technique using the same amount of protein for all individ-
uals. Samples of soluble proteins (70 pg/well) were sepa-
rated by SDS-PAGE; this amount of total protein is in the
linear range of the antibody-antigen response for the spe-
cies and antibodies studied (Fig. 1a, b). The primary mono-
clonal antibodies used were anti-HSP70 (clone BRM22,
Sigma H-5147) diluted 1/5,000 and anti-HSP60 (clone
LK2, Sigma H-3524) diluted 1/1,000. These antibodies

Localities Species Sample size Region
Point Thomas (King George 1.) 62°10'S 58°29'W P. adeliae P. papua 25 (9F, 4M) 10 (7F, 3M) 1
Miers Bluff (Livingston I.) 62°43'S 60°26'W P. antarctica 25 (6F, 17M) 1
Baily Head (Deception 1.) 62°58'S 60°30'W P. antarctica 25 (10F, 13M) 1
George Point (Ronge I.) 64°40'S 60°40'W P. Antarctica P. papua 25 (10F, 10M) 25 (11F, 9M) 2
Torgersen 1. 64°46'S 64°04'W P. adeliae 25 (5F, 18M) 2
Avian I. 67°46'S 68°43'W P. adeliae 25 (5F, 15M) 3

F females, M males
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Fig. 1 a Gel/Blot set showing a
equal amounts of proteins load-
ed per lane. b Correlation be-
tween observed HSP bands and gzgzg
the arbitrary measures of optical
density per area in the three stud-
ied species
b 400 Hsp70
= P. papua
>§ s P. antarctica
£9 300+
= v P. adeliae
53
3
g ‘g’_ 200 +
g x
Eg
S 100 o
0 T T T 1

react specifically with HSP70 and HSP60, respectively, as
shown by the immunoreactive bands of appropriate molec-
ular weights obtained. These antibodies recognise both con-
stitutive and inducible forms of the HSPs under study. The
peroxidase-conjugated secondary antibody was goat anti-
mouse specific for the Fc region (Sigma A-0168) at 1/6,000
dilution. Immuno-reactivity of blots was measured by
means of densitometric quantification using a digital image
system (Scion Image for Windows, Scion Corporation,
Frederick, MD, USA). Results are expressed as arbitrary
measures of optical density per area (OD/area) (see details
in Moreno et al. 2002).

To account for potential sexual variation in the level of
HSPs within each species, we sexed the individuals by
means of molecular markers (Ellegren 1996). In the case of
the adélie penguin, we used a PCR-RFLP method (Boutette
et al. 2002).

Data were analysed with generalised linear models
(GLM) with region and sex as factors and body mass and
haematocrit as covariates. We used backwards stepwise
selection procedures to determine which variables
accounted best for variation in the dependent variable. The
criterion to remove a variable was set a P = 0.05. All means
are expressed £SE.

Results

The HSP70 and HSP60 were detected in the three species
of penguins studied and showed geographical differences in
their levels. Levels of HSP70 showed differences in both
adélie penguin (F, ¢, = 5.25, P = 0.007; Fig. 2a) and gentoo
penguin (F1,20:3O.58, P <0.0001; Fig. 2b), but not the
Chinstrap penguin (F, 59 = 2.47, P =0.09). The pattern of

25 50 75 100
Protein (micrograms)

HSP70 variation was different for each species. Among
adélie penguins HSP70 increased from north to south, with
the southern-most population (Avian Island) showing the
highest level. However, gentoo penguin showed the oppo-
site pattern with higher levels in the northern-most popula-
tion (King George Island). Gentoo penguin showed
marginally significant sexual differences in HSP70
(Fy19=3.51, P=0.07), with males showing higher values
(172.00 £ 4.86) than females (160 & 3.62). Otherwise, no
statistically significant difference in HSP70 was evident
between sexes. Body mass and haematocrit did not explain
a significant percentage of the variation found in HSP70
level (P > 0.05, results not shown).

With respect to HSP60, only gentoo penguin populations
showed significant variation in the level of this protein
(Fyp0=6.4, P=0.01; Fig.2c), with higher levels in the
northern population. Sex accounted for a significant varia-
tion of HSP60 in chinstrap penguins (F,¢=35.03,
P =0.028); females (111.07 £ 4.49) showed higher values
of this protein than males (98.19 4 3.57). For gentoo pen-
guins, males exhibited marginally higher HSP60 levels than
females (Fy 9= 4.10, P=0.056; males = 12545 £ 11.72,
females = 95.79 £ 8.75). Body mass and haematocrit did
not show any significant relationship with HSP60 levels in
any species (P > (0.05 results not shown).

We also compared levels of HSP70 and HSP60 between
species in the same locality as it is expected that the envi-
ronment acts similarly on them: adélie versus gentoo pen-
guin at Point Thomas and chinstrap versus gentoo penguin
at George Point (Ronge Island). In the first case, we found
no significant differences between adélie and gentoo pen-
guins in either HSP70 nor HSP60 (F 130 = 1.40, P=0.24,
Fii9= 1.36, P = 0.25, respectively). However, in the second,
we found significant differences in levels of both HSP70 and
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Fig. 2 a Geographical differences in HSP70 levels in the adélie pen-
guin. b Geographical differences in HSP70 levels in the gentoo pen-
guin. ¢ Geographical differences in HSP60 levels in the gentoo penguin

HSP60 (F,,;=38.25, P=0.007, F,5=5.68, P=0.02,
respectively) between the chinstrap and gentoo in both
HSP70 (chinstrap = 170.68 & 4.76, gentoo = 147.60 £
5.99) and HSP60 (chinstrap = 110,57 4 5.58, gentoo =
87.31 £ 7.02).

Discussion

Our results revealed: (1) no general pattern of geographical
variation in levels of HSPs among the three species of pen-
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guins; (2) population differences, south to north, in HSP70
and HSP60 levels of gentoos; (3) a significant population
differences, north to south, variation in HSP70 but not
HSP60 in adélies; and no pattern in the chinstrap penguin.

Although, interspecific differences on HSP levels should
be taken cautiously as each species may show differences in
the affinity to the monoclonal antibody used to detect HSPs,
the comparison of the levels of HSP70 and HSP60 between
chinstrap versus gentoo penguin in George Point showed a
significant difference. As the same environment should act
on all penguins present in the same location, this result
shows that some species-specific differences exist in the
level of HSPs. Differences in the stress threshold among
penguin species might well be involved. Some authors have
found similar results comparing different species of Antarc-
tic and non-Antarctic notothenioid fishes (Carpenter and
Hofmann 2000).

Heat shock proteins respond to a wide variety of environ-
mental factors, from UV radiation (Trautinger et al. 1996),
contaminants (Werner and Nagel 1997), temperature (Sonna
et al. 2002), bacterial and virus infection (Collins and High-
tower 1982), and parasitism (Merino et al. 1998), among oth-
ers. Some of these factors vary by latitude in Antarctic
Peninsula region (Table 2). Temperature (Turner et al. 2004),
human activities that can promote the increase of contamina-
tion levels such as the establishment of scientific bases and
tourism (Hofman and Jatko 2001; Bargagli 2005), and levels
of immunity that can be explained by the presence of para-
sites or pathogens are higher in northern locations (see Gard-
ner et al. 1997; Kerry et al. 1999; Gauthier-Clerc et al. 2002;
Barbosa et al. 2007). Such variation could explain the intra-
specific differences found in HSP70 and HSP60 in the gentoo
penguin. Although all the species should be affected by these
factors as well, species-specific differences in the stress
threshold as suggested above could explain such results.

The pattern of latitudinal variation found in the adélie
penguin, opposite that of the gentoo, could be related to
changes of UV radiation, although nothing is known about
the direct effects of UV radiation on penguins (Karentz and
Bosch 2001). On the other hand, temperature decreases
from north to south, and low temperatures can increase the
levels of HSPs (Martinez et al. 2001) even in homeotherms

Table 2 Changes in environmental factors in the different regions
studied (see Table 1)

Region Temperature Human Parasites and/ uv
impact or diseases” radiation

1 ++ ++ ++ -

2 + ++ + +

3 - - — ++

# Suggested by variation in immunoglobulin levels (Barbosa et al.
2007)



Polar Biol (2007) 30:1239-1244

1243

(Sonna et al. 2002). It is possible that we detected an effect
of HSP70 in its role of avoiding protein denaturation in
response to cold (Sonna et al. 2002; Place and Hofmann
2005). However, if this explains variation in HSP in adélie
penguins, why was there no similar pattern among the other
species? Perhaps such a difference in adélie penguins could
be related to the lower temperatures it experiences in its
more southern distribution. Specific differences in response
to cold stress have been found in other organisms as well
(Bosch et al. 1988; Sanders et al. 1991).

Only the chinstrap penguin showed significant differences
in HSP60 levels between sexes, with higher levels being
found for females; sexual differences among gentoo pen-
guins were the opposite for both the HSP70 and HSP60.
Sexual differences in HSP60 levels have also been found in
other birds such as barn swallows (Merino et al. 2002).
These differences could be linked to levels of stress experi-
enced by these birds (Merino et al. 2002). For example, sex-
ual differences are apparent in the susceptibility of males to
the effect of parasites or the differential exposure to patho-
gens (Zuk and McKean 1996), with the differences operating
in either direction with respect to contaminants depending on
circumstances (Mateo and Guitart 2003; Taggart et al. 2006).
Obviously, additional investigation is needed.

Climate change in the Antarctic Peninsula is a plausible
scenario (King etal. 2003). Considering the interactions
between climate change and environmental factors affecting
the level of HSPs, our results on the variation of HSPs in
penguins should be considered as a baseline for future com-
parisons under a scenario of temperature increase in the area.

In summary, our results show for the first time the detec-
tion of HSPs in Antarctic penguins. We also show that HSP
level varies geographically within species in this continent
although in different ways in the three species.
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